(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
1(2(1(x1))) → 2(0(2(x1)))
0(2(1(x1))) → 1(0(2(x1)))
L(2(1(x1))) → L(1(0(2(x1))))
1(2(0(x1))) → 2(0(1(x1)))
1(2(R(x1))) → 2(0(1(R(x1))))
0(2(0(x1))) → 1(0(1(x1)))
L(2(0(x1))) → L(1(0(1(x1))))
0(2(R(x1))) → 1(0(1(R(x1))))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
1(2(1(z0))) → 2(0(2(z0)))
1(2(0(z0))) → 2(0(1(z0)))
1(2(R(z0))) → 2(0(1(R(z0))))
0(2(1(z0))) → 1(0(2(z0)))
0(2(0(z0))) → 1(0(1(z0)))
0(2(R(z0))) → 1(0(1(R(z0))))
L(2(1(z0))) → L(1(0(2(z0))))
L(2(0(z0))) → L(1(0(1(z0))))
Tuples:
1'(2(1(z0))) → c(0'(2(z0)))
1'(2(0(z0))) → c1(0'(1(z0)), 1'(z0))
1'(2(R(z0))) → c2(0'(1(R(z0))), 1'(R(z0)))
0'(2(1(z0))) → c3(1'(0(2(z0))), 0'(2(z0)))
0'(2(0(z0))) → c4(1'(0(1(z0))), 0'(1(z0)), 1'(z0))
0'(2(R(z0))) → c5(1'(0(1(R(z0)))), 0'(1(R(z0))), 1'(R(z0)))
L'(2(1(z0))) → c6(L'(1(0(2(z0)))), 1'(0(2(z0))), 0'(2(z0)))
L'(2(0(z0))) → c7(L'(1(0(1(z0)))), 1'(0(1(z0))), 0'(1(z0)), 1'(z0))
S tuples:
1'(2(1(z0))) → c(0'(2(z0)))
1'(2(0(z0))) → c1(0'(1(z0)), 1'(z0))
1'(2(R(z0))) → c2(0'(1(R(z0))), 1'(R(z0)))
0'(2(1(z0))) → c3(1'(0(2(z0))), 0'(2(z0)))
0'(2(0(z0))) → c4(1'(0(1(z0))), 0'(1(z0)), 1'(z0))
0'(2(R(z0))) → c5(1'(0(1(R(z0)))), 0'(1(R(z0))), 1'(R(z0)))
L'(2(1(z0))) → c6(L'(1(0(2(z0)))), 1'(0(2(z0))), 0'(2(z0)))
L'(2(0(z0))) → c7(L'(1(0(1(z0)))), 1'(0(1(z0))), 0'(1(z0)), 1'(z0))
K tuples:none
Defined Rule Symbols:
1, 0, L
Defined Pair Symbols:
1', 0', L'
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7
(3) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
1'(2(1(z0))) → c(0'(2(z0)))
1'(2(0(z0))) → c1(0'(1(z0)), 1'(z0))
0'(2(1(z0))) → c3(1'(0(2(z0))), 0'(2(z0)))
0'(2(0(z0))) → c4(1'(0(1(z0))), 0'(1(z0)), 1'(z0))
L'(2(1(z0))) → c6(L'(1(0(2(z0)))), 1'(0(2(z0))), 0'(2(z0)))
L'(2(0(z0))) → c7(L'(1(0(1(z0)))), 1'(0(1(z0))), 0'(1(z0)), 1'(z0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
1(2(1(z0))) → 2(0(2(z0)))
1(2(0(z0))) → 2(0(1(z0)))
1(2(R(z0))) → 2(0(1(R(z0))))
0(2(1(z0))) → 1(0(2(z0)))
0(2(0(z0))) → 1(0(1(z0)))
0(2(R(z0))) → 1(0(1(R(z0))))
L(2(1(z0))) → L(1(0(2(z0))))
L(2(0(z0))) → L(1(0(1(z0))))
Tuples:
1'(2(R(z0))) → c2(0'(1(R(z0))), 1'(R(z0)))
0'(2(R(z0))) → c5(1'(0(1(R(z0)))), 0'(1(R(z0))), 1'(R(z0)))
S tuples:
1'(2(R(z0))) → c2(0'(1(R(z0))), 1'(R(z0)))
0'(2(R(z0))) → c5(1'(0(1(R(z0)))), 0'(1(R(z0))), 1'(R(z0)))
K tuples:none
Defined Rule Symbols:
1, 0, L
Defined Pair Symbols:
1', 0'
Compound Symbols:
c2, c5
(5) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 2 of 2 dangling nodes:
1'(2(R(z0))) → c2(0'(1(R(z0))), 1'(R(z0)))
0'(2(R(z0))) → c5(1'(0(1(R(z0)))), 0'(1(R(z0))), 1'(R(z0)))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
1(2(1(z0))) → 2(0(2(z0)))
1(2(0(z0))) → 2(0(1(z0)))
1(2(R(z0))) → 2(0(1(R(z0))))
0(2(1(z0))) → 1(0(2(z0)))
0(2(0(z0))) → 1(0(1(z0)))
0(2(R(z0))) → 1(0(1(R(z0))))
L(2(1(z0))) → L(1(0(2(z0))))
L(2(0(z0))) → L(1(0(1(z0))))
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:
1, 0, L
Defined Pair Symbols:none
Compound Symbols:none
(7) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(8) BOUNDS(O(1), O(1))